Anonymous Symmetric-Key Communication

Fabio Banfi and Ueli Maurer

ETH Zurich, Switzerland

12th Conference on Security and Cryptography for Networks September 14-16, 2020, Amalfi, Italy (Virtual)

Background: Schemes

We study **probabilistic** encryption (pE) / authenticated encryption (pAE):

 $\Pi \doteq (\texttt{Gen}, \texttt{Enc}, \texttt{Dec})$ where:

- Gen is a (usually uniform) distribution over \mathcal{K} ;
- Enc : $\mathcal{K} \times \mathcal{M} \to \mathcal{C}$ is a *probabilistic* function;
- Dec : $\mathcal{K} \times \mathcal{C} \to \mathcal{M} \cup \{\bot\}$ is a deterministic function.

In particular: we do not consider nonce-based schemes (nE/nAE)

Background: Probabilistic vs Nonce-based

Why study anonymity of pE/pAE rather than nE/nAE?

- [CR19] recently studied anonymity of nAE
 - nAE cannot provide anonymity \implies New complex scheme: anAE
- pE/pAE conceptually easier and more suitable for anonymity
- Also closely captures some real-world implementations:
 - Consider nAE scheme AES-GCM deployed in TLS 1.3:
 - Uses randomized nonces \implies This reduces nAE to pAE!

Background: Security

Conventional security notions for pE/pAE:

- pE: should achieve confidentiality
- pAE: should achieve confidentiality and authenticity

How is security defined?

- Game-based: adversary must win a game (bit-guessing/search)
 - Can be formulated as a distinction problem
- Composable: simulation-based, distinguish real/ideal worlds
- \implies We will see how the two are actually closely related

Background: Cryptographic Systems

For security definitions, we define following systems for $K \leftarrow \text{Gen}()$:

- \mathbf{E}_K : on input m, output $\operatorname{Enc}_K(m)$,
- \mathbf{D}_K : on input c, output $\text{Dec}_K(c)$,
- $\mathbf{E}^{\$}_{K}$: on input m, output $\mathrm{Enc}_{K}(\tilde{m})$ for $\tilde{m} \xleftarrow{\$} \{0,1\}^{|m|}$
- \mathbf{D}^{\perp} : on input *c*, output \perp
- \$: on input m, output \tilde{c} for $\tilde{c} \stackrel{\$}{\leftarrow} \{0,1\}^{|\operatorname{Enc}_K(m)|}$

 $\mathbf{S}\approx\mathbf{T}:$ systems \mathbf{S} and \mathbf{T} are computationally indistinguishable

Background: Game-based Security of pE/pAE

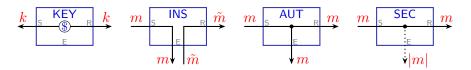
- pE: IND-CPA
 - Usually a bit-guessing problem

• Here a distinction problem [BDJR97]: $\mathbf{E}_K \approx \mathbf{E}_K^{\$}$

- pAE: IND-CPA + INT-CTXT = IND-CCA3
 - Usually a bit-guessing problem + search problem
 - Here a distinction problem [Shr04]: $[\mathbf{E}_K, \mathbf{D}_K] \approx [\mathbf{E}_K^{\$}, \mathbf{D}^{\perp}]$
- \implies Implicit assumption: 1 sender (S), 1 receiver (R), 1 eavesdropper (E)

Background: Composable Security of pE/pAE

Resources for sender S, receiver R, and eavesdropper E:



Using constructive cryptography, we define:

• pE secure if constructs SEC from AUT and KEY:

 $[\mathsf{KEY},\mathsf{AUT}] \xrightarrow{\mathsf{pE}} \mathsf{SEC} \quad :\Longleftrightarrow \quad \exists \mathsf{sim} : \mathsf{pE}([\mathsf{KEY},\mathsf{AUT}]) \approx \mathsf{sim}(\mathsf{SEC})$

• pAE secure if constructs SEC from INS and KEY:

 $[\mathsf{KEY},\mathsf{INS}] \xrightarrow{\mathsf{pAE}} \mathsf{SEC} \quad :\Longleftrightarrow \quad \exists \mathsf{sim} : \mathsf{pAE}([\mathsf{KEY},\mathsf{INS}]) \approx \mathsf{sim}(\mathsf{SEC})$

Background: Game-based \implies Composable

How do these definitions relate?

• pE IND-CPA-secure \implies [KEY, AUT] $\xrightarrow{\text{pE}}$ SEC, i.e.:

 $\mathbf{E}_K \approx \mathbf{E}_K^{\$} \implies \exists sim : pE([KEY, AUT]) \approx sim(SEC)$

• pAE IND-CCA3-secure \implies [KEY, INS] $\xrightarrow{\text{pAE}}$ SEC, i.e.:

 $[\mathbf{E}_K, \mathbf{D}_K] \approx [\mathbf{E}_K^{\$}, \mathbf{D}^{\perp}] \implies \exists \mathsf{sim} : \mathsf{pAE}([\mathsf{KEY}, \mathsf{INS}]) \approx \mathsf{sim}(\mathsf{SEC})$

Game-based Anonymity: New Definitions

BUT: Real-world usage of pE/pAE happens in a multi-user setting!

 \implies We consider n (= 2) senders (+ 1 receiver, 1 eavesdropper)

Anonymity modeled by indistinguishability of keys (IK):

 $[\mathbf{E}_{K_1}, \mathbf{E}_{K_2}] \approx [\mathbf{E}_K^{\$}, \mathbf{E}_K^{\$}]$

• pAE: IND-CCA3 + IK-CCA3 = IND-IK-CCA3 if

 $[\mathbf{E}_{K_1}, \mathbf{D}_{K_1}, \mathbf{E}_{K_2}, \mathbf{D}_{K_2}] \approx [\mathbf{E}_K^{\$}, \mathbf{D}^{\perp}, \mathbf{E}_K^{\$}, \mathbf{D}^{\perp}]$

Game-based Anonymity: IND\$ and Enc-then-MAC

- IND\$-{CPA,CCA3} implies anonymity (IND-IK-{CPA,CCA3}):
 - $\blacktriangleright \mathsf{pE:} \mathbf{E}_K \approx \$ \implies [\mathbf{E}_{K_1}, \mathbf{E}_{K_2}] \approx [\mathbf{E}_K^\$, \mathbf{E}_K^\$]$
 - pAE: $[\mathbf{E}_K, \mathbf{D}_K] \approx [\$, \mathbf{D}^{\perp}]$

 $\implies [\mathbf{E}_{K_1}, \mathbf{D}_{K_1}, \mathbf{E}_{K_2}, \mathbf{D}_{K_2}] \approx [\mathbf{E}_K^{\$}, \mathbf{D}^{\perp}, \mathbf{E}_K^{\$}, \mathbf{D}^{\perp}]$

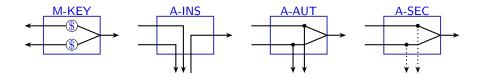
Note: IND\$-secure nAE with randomized nonces provides anonymity!

• Encrypt-then-MAC is anonymity-preserving:

If pE is IND-IK-CPA-secure and pMAC is UF-IK-CMA-secure

 \implies pAE := EtM(pE,pMAC) is IND-IK-CCA3-secure

Composable Anonymity: Adapting the Resources



[AHM⁺14]: UF-IK-CMA-secure pMAC constructs

- A-AUT from A-INS and M-KEY
- A-SEC from A-AUT (inefficient)
- A-SEC from A-INS and from M-KEY (inefficient)

Composable Anonymity: New Definitions

We use again **constructive cryptography** to define anonymous security:

• pE secure and anon. if constructs A-SEC from A-AUT and M-KEY:

 $[\mathsf{M}\text{-}\mathsf{KEY},\mathsf{A}\text{-}\mathsf{AUT}]\xrightarrow{\mathsf{pE}}\mathsf{A}\text{-}\mathsf{SEC}$

 $:\iff \quad \exists sim : pE([M-KEY, A-AUT]) \approx sim(A-SEC)$

• pAE secure and anon. if constructs A-SEC from A-INS and M-KEY:

 $[\mathsf{M}\text{-}\mathsf{KEY},\mathsf{A}\text{-}\mathsf{INS}]\xrightarrow{\mathsf{p}\mathsf{AE}}\mathsf{A}\text{-}\mathsf{SEC}$

 $:\iff \exists sim : pAE([M-KEY, A-INS]) \approx sim(A-SEC)$

Game-based Anon. \implies Composable Anon.

How do these definitions relate?

• pE IND-IK-CPA-secure \implies [M-KEY, A-AUT] \xrightarrow{pE} A-SEC, i.e.:

 $[\mathbf{E}_{K_1}, \mathbf{E}_{K_2}] \approx [\mathbf{E}_K^{\$}, \mathbf{E}_K^{\$}]$

 $\implies \exists sim : pE([M-KEY, A-AUT]) \approx sim(A-SEC)$

• pAE IND-IK-CCA3-secure \implies [M-KEY, A-INS] \xrightarrow{pAE} A-SEC, i.e.:

 $[\mathbf{E}_{K_1}, \mathbf{D}_{K_1}, \mathbf{E}_{K_2}, \mathbf{D}_{K_2}] \approx [\mathbf{E}_K^{\$}, \mathbf{D}^{\bot}, \mathbf{E}_K^{\$}, \mathbf{D}^{\bot}]$

 $\implies \exists sim : pAE([M-KEY, A-INS]) \approx sim(A-SEC)$

Conclusions

- We provided game-based anonymity definitions for pE/pAE:
 - Pseudorandom ciphertexts (IND\$) imply anonymity
 - $\implies\,$ nAE with randomized nonces provides anonymity
 - Enc-then-MAC preserves anonymity
- We also provided composable anonymity definitions for pE/pAE:
 - They provide a better understanding of the application
 - They are implied by the game-based definitions
 - They allow for more efficient protocols than known before

Thank you for your attention!

References

- Joël Alwen, Martin Hirt, Ueli Maurer, Arpita Patra, and Pavel Raykov, Anonymous authentication with shared secrets, LATINCRYPT, 2014.
- M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, *A concrete security treatment of symmetric encryption*, FOCS, 1997.
- John Chan and Phillip Rogaway, Anonymous AE, ASIACRYPT, 2019.
- Tom Shrimpton, A characterization of authenticated-encryption as a form of chosen-ciphertext security, Cryptology ePrint Archive, 2004.